Acta Cryst. (1978). B34, 3382-3384

The Adduct Bis(phenylethynyl)mercury-1,10-Phenanthroline

By E. GUTIÉRREZ-PUEBLA* AND A. VEGAS*

Instituto de Química Inorgánica 'Elhuyar', CSIC, Serrano 113, Madrid-6, Spain

AND S. GARCÍA-BLANCO

Departamento de Rayos X, Instituto 'Rocasolano', CSIC, Serrano 119, Madrid-6, Spain

(Received 20 June 1978; accepted 18 July 1978)

Abstract. $Hg(C_6H_5-C\equiv C)_2$. $C_{12}H_8N_2$, $M_r = 583.06$, monoclinic, $P2_1/n$, a = 22.564 (3), b = 9.577 (5), c = 10.339 (5) Å, $\beta = 96.20$ (1)°, Z = 4, $D_c = 1.73$ g cm⁻³, $\mu(Mo K\alpha) = 71.0$ cm⁻¹. The structure was refined by least-squares procedures to R = 5.9% for all measured reflexions. The Hg atom is four-coordinated, with geometry far from tetrahedral. The two Hg-N distances and the C(11)-Hg-C(1) angle indicate a weak interaction between the phenanthroline molecule and the Hg-containing moiety.

Introduction. An IR study of several bisalkynyl derivatives of Hg with 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline has been reported by Cano-Esquivel, Santos-Macias & Ballester-Reventos (1977). For $Hg(C_6H_5-C\equiv C)_2$. $C_{12}H_8N_2$, the absence of some IR absorption bands prevented a clear understanding of the donor-acceptor interactions between the two moieties, so the crystal structure determination was undertaken.

A crystal $0.17 \times 0.07 \times 0.37$ mm was chosen for the data collection on an automatic four-circle PW 1100 diffractometer with Mo Ka radiation monochromated by graphite ($\lambda = 0.7107$ Å). 4834 independent reflexions were measured in the $\omega/2\theta$ scan mode within $2 \le \theta \le 27^\circ$. 1231 reflexions for which $I \le 2\sigma(I)$ were considered as unobserved. The systematic absences were h0l for h + l odd and 0k0 for k odd. The intensities were corrected for absorption by ORABS (Schwarzenbach, 1972) and Lorentz and polarization corrections were applied.

Scattering factors for neutral atoms were taken from *International Tables for X-ray Crystallography* (1974). Anomalous dispersion factors for Hg were those of Cromer & Liberman (1970).

The structure was solved by Patterson and Fourier syntheses allowing the location of all the non-hydrogen atoms. After anisotropic block full-matrix least-squares refinement, R was 5.9% for the measured reflexions. A difference synthesis with reflexions with sin $\theta/\lambda < 0.5$

Table 1.	Weighting scheme applied in the least-squares			
refinement				

$w = K/\sigma^2$	K = 0.5263	$\sigma = a + b F_o $
а	b	
4.2999	-0.0717	$24 > F_{o}$
2.2942	-0.0165	$53 > F_{0} > 24$
0-4018	0-0189	$F_{o}^{"} > 53$

Å⁻¹ showed 8 of the 18 H atoms, the remainder being located by geometry. Weights assigned by *PESOS* (Martínez-Ripoll & Cano, 1975) are given in Table 1. Further refinement with isotropic temperature factors for the H atoms gave a final R = 4.6% and $R_w = 4.9\%$ for observed reflexions only, where $R_w = (\sum w\Delta^2 F/\sum w|F_o|^2)^{1/2}$. A final difference synthesis showed no significant electron density. The final positional parameters are listed in Table 2.*

Discussion. The interatomic distances and angles are listed in Table 3. The atoms are labelled as in Fig. 1. The Hg atom has four-coordination. The phenanthroline molecule is practically planar with an average deviation of 0.047 A from the best least-squares plane and forms an angle of 85.83° with the plane defined by Hg and the four C atoms of the two acetylenic groups which bond to Hg and to the phenyl groups in a non-linear fashion.

The Hg–C length is longer than in Hg(CN)₂ (Seccombe & Kennard, 1969) but shorter than in (C₆H₅)Hg(CN) (Gilli, Cano & García-Blanco, 1976) and (C₆H₅)Hg(CN).C₁₂H₈N₂ (Ruiz-Amil, Martínez-Carrera & García-Blanco, 1978) in which both Hg and *sp*-hybridized C are involved. The C=C length appears unaffected by coordination when compared with that obtained in other acetylenic hydrocarbons not bonded to metal atoms. The value of 1.180 (5) Å found in C₁₇H₁₃N (Pérez-Salazar, Cano, Martinez-Carrera &

^{*} Also at Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense, Madrid, Spain.

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33791 (22 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Positional parameters ($\times 10^4$, for Hg $\times 10^5$, for $H \times 10^3$) of $Hg(C_6H_5-C\equiv C)_2$. $C_{12}H_8N_2$

E.s.d.'s are given in parentheses.

Table 3.	Bond l	lengths	(Å) and	angles	(°) <i>for</i>
	Hg(C ₆ I	H₅C≡	$C)_2 . C_{12}$	H ₈ N ₂	

....

....

.

	x	у	Z
Hg	50604 (1)	58752 (3)	29621 (4)
N(1)	5433 (4)	8300 (8)	2068 (8)
N(2)	4602 (3)	8263 (7)	3797 (7)
C(I)	5813 (4)	5675 (10)	4243 (11)
C(2)	6285 (4)	5617 (9)	4834 (10)
C(3)	6867 (4)	5663 (9)	5558 (8)
C(4)	7265 (5)	6702 (10)	5257 (10)
C(5)	7829 (4)	6778 (10)	5896 (11)
C(6)	8012 (4)	5806 (12)	6842 (10)
C(7)	7629 (5)	4778 (14)	7156 (10)
C(8)	7048 (5)	4688 (11)	6508 (10)
C(11)	4346 (5)	5553 (10)	1624 (11)
C(12)	3951 (5)	5224 (10)	841 (10)
C(13)	3445 (4)	4787 (10)	-57 (9)
C(14)	3339 (6)	5400 (12)	-1297 (11)
C(15)	2849 (7)	4969 (15)	-2132 (13)
C(16)	2487 (6)	3909 (16)	-1780 (12)
C(17)	2598 (5)	3286 (16)	-577 (14)
C(18)	3074 (5)	3734 (12)	306 (11)
C(20)	5862 (6)	8346 (12)	1269 (12)
C(21)	6013 (6)	9556 (14)	639 (13)
C(22)	5722 (5)	10757 (12)	815 (11)
C(23)	5274 (4)	10776 (9)	1677 (9)
C(24)	5149 (4)	9500 (8)	2281 (9)
C(25)	4715 (4)	9488 (8)	3215 (8)
C(26)	4226 (5)	8272 (11)	4671 (11)
C(27)	3934 (5)	9465 (12)	5074 (11)
C(28)	4040 (4)	10690 (11)	4476 (11)
C(29)	4437 (4)	10736 (9)	3511 (9)
C(30)	4548 (5)	11982 (10)	2834 (12)
C(31)	4956 (6)	12006 (10)	1960 (13)
H(4)	712 (3)	716 (8)	456 (8)
H(5)	815 (3)	730 (8)	573 (7)
H(6)	842 (4)	586 (12)	723 (10)
H(7)	777 (5)	423 (15)	787 (12)
H(8)	669 (4)	414 (11)	694 (9)
H(14)	357 (4)	597 (11)	-155 (9)
H(15)	297 (9)	526 (22)	-297 (20)
H(16)	210(7)	369 (19)	-228 (17)
H(17)	233 (5)	298 (13)	-17 (12)
H(18)	317 (5)	335 (12)	130 (11)
H(20)	608 (5)	744 (13)	119(11)
H(21)	630 (4)	957 (11)	4 (10)
H(22)	580 (4)	1167 (12)	24 (10)
H(26)	418 (4)	745 (12)	505 (10)
H(27)	368 (4)	939(10)	590 (9) 400 (11)
H(28)	390 (5)	1101(12)	489 (11)
H(30)	427(4)	12/3(11)	303 (9)
n(si)	512(5)	12/9(14)	130 (12)

Garcia-Blanco, 1977) agrees with $1 \cdot 18$ (1) and $1 \cdot 19$ (1) Å in this work.

From the results reported in this work, only the C(11)-Hg-C(1) angle and the two Hg-N distances can be taken into account to explain the donoracceptor interaction. The magnitudes may be compared with the respective values of 180° and 2.8-3.0 Å found in (Ph)₂Hg(dmp)₂ and in (Ph)₂Hg(tmp)₂ (Canty & Gatehouse, 1972). In this last case, the existence of

	Standa	rd deviation	S	σ(A)	σ(°)	
	Involvi Involvi Involvi	ng Hg ng H atoms ng C and N		0·01 0·1 0·02	0·4 10·0 1·0	
Hg-C(1) -C(11 -N(1) -N(2))	2.05 2.03 2.67 2.69		N(1 C(2	$\begin{array}{c} 1) - C(20) \\ - C(24) \\ 21) - C(20) \\ - C(22) \\ 22) \\ - C(22) \\ 23) \\ - C(22) \end{array}$	1.34 1.35 1.39 1.35
C(X1) - C(X2) - C(X3) - C(X3) - C(X3) - C(X4) - C(X4	C(X2) C(X3) C(X4) C(X8) C(X5)	(X = 0) $1 \cdot 17$ $1 \cdot 44$ $1 \cdot 40$ $1 \cdot 38$ $1 \cdot 37$	(X = 1) $1 \cdot 18$ $1 \cdot 45$ $1 \cdot 41$ $1 \cdot 39$ $1 \cdot 40$	C(2 N(2 C(2	$\begin{array}{c} -C(22) \\ -C(24) \\ -C(31) \\ 24) -C(25) \\ 2) -C(25) \\ -C(26) \\ 27) -C(26) \end{array}$	1.42 1.41 1.43 1.45 1.36 1.31 1.40
C(X5)-C(X6)-C(X6)-C(X7)-C(X7)-C(X7)-C(X7)-C(X6)-H(X7)-H(X6)-H(X7	C(X6) C(X7) C(X8) I(X4) I(X5) I(X6) I(X7)	1.38 1.37 1.41 0.9 0.9 1.0	1.38 1.38 1.40 0.8 1.0 1.0	C(2 C(2 C(2	C(28) 29)C(25) C(28) C(30) 20)H(20) 21)H(21)	1.36 1.40 1.41 1.42 1.0 0.9
C(<i>X</i> 8)–F	I(X 7) I(X 8)	1.1	1.1	C(2 C(2 C(2 C(2 C(3 C(3	22)-H(22) 26)-H(26) 27)-H(27) 28)-H(28) 30)-H(28) 31)-H(31)	0.9 1.1 1.0 1.0 1.0
C(1)—Hg N(1)—Hg C(1)—Hg	–C(11) –N(2) –N(1)	165.6 61.2 92.0	C C C	(1)—Hg— (11)—Hg- (11)—Hg-	N(2) -N(1) -N(2)	101+1 98+8 92+5
	$\begin{array}{l} \mathrm{Hg}-\mathrm{C}(X)\\ \mathrm{C}(X1)-\\ \mathrm{C}(X2)-\\ \mathrm{C}(X2)-\\ \mathrm{C}(X2)-\\ \mathrm{C}(X3)-\\ $	$ \begin{array}{l} (1) - C(X2) \\ C(X2) - C(\\ C(X3) - C(\\ C(X3) - C(\\ C(X3) - C(\\ C(X3) - C(\\ C(X5) - C(\\ C(X5) - C(\\ C(X5) - C(\\ C(X6) - $	X 3) X 4) X 8) X 8) X 5) X 6) X 7) X 8) X 3) 4) 5) 6) () 8)	(X = 0) 170 176 119 122 119 121 120 120 121 119 111 128 131 109 117 123 115 124 116 122	(x = 1) 173 176 121 119 120 119 121 120 120	
$\begin{array}{c} C(21)-C\\ C(20)-C\\ C(21)-C\\ C(22)-C\\ C(22)-C\\ C(22)-C\\ C(23)-C\\ C(23)-C\\ C(25)-C\\ C(25)-C\\ C(24)-C\\ C(24)-C\\ C(24)-C\\ C(29)-C\\ \end{array}$	$\begin{array}{c} (20) - N \\ (21) - C \\ (22) - C \\ (23) - C \\ (23) - C \\ (23) - C \\ (24) - C \\ (24) - N \\ (24) - N \\ (24) - N \\ (25) - C \\ (25) - N \\ (25) - N \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 (0) 0 (0) 7 (0) 3 (0) 19 11 3 11 8 11 9 11 9 11 9 11 9 11 9 11	C(20) - N(C(24) - N(C(25) - N(C(25) - N(C(25) - N(C(26) - N(C(26) - N(C(26) - N(C(26) - C(26) - C(26	1)-Hg 1)-Hg 2)-C(26) 2)-Hg 2)-Hg 20)-C(21) 20)-C(21) 21)-C(20) 21)-C(22) 22)-C(21) 22)-C(23) 26)-C(27)	121 121 118 120 122 115 0 123 0 123 0 123 0 127 0 120 0 121

Table 3 (cont.)

C(27)-C(26)-N(2)	125	H(26)-C(26)-N(2)	115
C(26)-C(27)-C(28)	117	H(27)-C(27)-C(26)	119
C(27)-C(28)-C(29)	120	H(27)-C(27)-C(28)	123
C(25)-C(29)-C(28)	118	H(28)-C(28)-C(27)	117
C(25)-C(29)-C(30)	120	H(28)-C(28)-C(29)	121
C(28)-C(29)-C(30)	122	H(30)-C(30)-C(29)	115
C(29)-C(30)-C(31)	121	H(30)-C(30)-C(31)	129
C(23)-C(31)-C(30)	121	H(31)-C(31)-C(23)	104
C(20)-N(1)-C(24)	118	H(31)-C(31)-C(30)	135

Fig. 1. ORTEP drawing of $Hg(C_6H_5-C\equiv C)_2 \cdot C_{12}H_8N_2$ (Johnson, 1965). The labels of the H atoms have been omitted for clarity: their numbering is that of the C atoms to which they are bonded.

interaction cannot be inferred because of the lack of precision in the Hg–N length. However, in our study, a shorter Hg–N distance (2.68 Å) corresponds to a smaller value in the C–Hg–C angle (165°) indicating a weak but clear donor-acceptor interaction between the two moieties.

Most of the calculations were performed with the XRAY 70 system (Stewart, Kundell & Baldwin, 1970). Thanks are due to the staff of CPD del MEC for the use of the 1108 Univac computer.

References

- CANO-ESQUIVEL, M., SANTOS-MACIAS, A. & BALLESTER-REVENTOS, L. (1977). An. Quím. 73, 1051–1056.
- CANTY, A. J. & GATEHOUSE, B. M. (1972). Acta Cryst. B28, 1872–1878.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891–1898.
- GILLI, G., CANO, F. H. & GARCÍA-BLANCO, S. (1976). Acta Cryst. B32, 2680–2682.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72–98. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- MARTÍNEZ-RIPOLL, M. & CANO, F. H. (1975). PESOS program. Instituto Rocasolano, CSIC, Serrano 119, Madrid-6, Spain.
- PÉREZ-SALAZAR, A., CANO, F. H., MARTÍNEZ-CARRERA, S. & GARCÍA-BLANCO, S. (1977). Acta Cryst. B33, 2276– 2278.
- RUIZ-AMIL, A., MARTÍNEZ-CARRERA, S. & GARCÍA-BLANCO, S. (1978). *Acta Cryst*. B**34**, 2711–2714.
- SCHWARZENBACH, D. (1972). ORABS program. Zürich.
- SECCOMBE, R. C. & KENNARD, C. H. L. (1969). J. Organomet. Chem. 18, 243-247.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1978). B34, 3384-3387

(+)-trans-N',O-Cyclohexylidene-N-(2-hydroxycyclohexyl)guanidinium p-Toluenesulfonate

By Hikaru Nakamura and Yoichi Iitaka

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113, Japan

(Received 22 March 1978; accepted 16 May 1978)

Abstract. $C_{13}H_{24}N_3O^+$. $C_7H_7O_3S^-$, FW 409.5, monoclinic, $P2_1$, Z = 2, a = 10.130 (5), b = 10.593 (5), c = 10.011 (5) Å, $\beta = 100.22$ (4)°, V = 1057.2 Å³, $D_x = 1.287$ g cm⁻³. R = 0.04 for 1988 observed structure factors. The complex is formed by the hydrogen bonds between the guanidinium and sulfonate groups which form a helical structure around the screw diad.

Introduction. In the course of synthetic studies on dihydrostreptomycin it became necessary to establish the structure of the product obtained by the reaction of

(+)-trans-2-guanidinocyclohexanol with 1,1-dimethoxycyclohexane in order to clarify the unusual reaction of the trans-diequatorial guanidino and hydroxyl groups in the streptidine moiety (Takagi, Kawashima, Tsuchiya, Sano & Umezawa, 1976). The guanidino compound was converted to its *p*-toluenesulfonic acid salt in order to make the compound soluble in organic solvents.

Crystals of the p-toluenesulfonate salt grown from ethanol solutions were colorless, transparent prisms elongated along the b axis. The lattice constants were